BigSnarf blog

Infosec FTW

Visualizing Convnet Layers and activations

Raw data in jpeg format

seveb

jpeg converted to greyscale value integers in numpy array

screen-shot-2016-10-19-at-1-13-44-pm

integers converted to floats in numpy array

screen-shot-2016-10-19-at-1-13-34-pm

floats are between values 0.0-255.0 need to be converted to floats between 0.0-1.0

screen-shot-2016-10-19-at-1-13-21-pm

These are visualizations of the filters in Tensorflow layers

screen-shot-2016-10-18-at-5-06-38-pm

These are the visualization of the activations of the Tensorflow convolutional layers

screen-shot-2016-10-18-at-1-33-32-pm


# %% Imports
get_ipython().magic(u'matplotlib inline')
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
from libs.utils import *
import matplotlib.pyplot as plt
# In[2]:
# %% Setup input to the network and true output label. These are
# simply placeholders which we'll fill in later.
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
# In[3]:
# %% Since x is currently [batch, height*width], we need to reshape to a
# 4-D tensor to use it in a convolutional graph. If one component of
# `shape` is the special value -1, the size of that dimension is
# computed so that the total size remains constant. Since we haven't
# defined the batch dimension's shape yet, we use -1 to denote this
# dimension should not change size.
x_tensor = tf.reshape(x, [-1, 28, 28, 1])
# In[4]:
# %% We'll setup the first convolutional layer
# Weight matrix is [height x width x input_channels x output_channels]
filter_size = 5
n_filters_1 = 16
W_conv1 = weight_variable([filter_size, filter_size, 1, n_filters_1])
# In[5]:
# %% Bias is [output_channels]
b_conv1 = bias_variable([n_filters_1])
# In[6]:
# %% Now we can build a graph which does the first layer of convolution:
# we define our stride as batch x height x width x channels
# instead of pooling, we use strides of 2 and more layers
# with smaller filters.
h_conv1 = tf.nn.relu(
tf.nn.conv2d(input=x_tensor,
filter=W_conv1,
strides=[1, 2, 2, 1],
padding='SAME') +
b_conv1)
# In[7]:
# %% And just like the first layer, add additional layers to create
# a deep net
n_filters_2 = 16
W_conv2 = weight_variable([filter_size, filter_size, n_filters_1, n_filters_2])
b_conv2 = bias_variable([n_filters_2])
h_conv2 = tf.nn.relu(
tf.nn.conv2d(input=h_conv1,
filter=W_conv2,
strides=[1, 2, 2, 1],
padding='SAME') +
b_conv2)
# In[8]:
# %% We'll now reshape so we can connect to a fully-connected layer:
h_conv2_flat = tf.reshape(h_conv2, [-1, 7 * 7 * n_filters_2])
# In[9]:
# %% Create a fully-connected layer:
n_fc = 1024
W_fc1 = weight_variable([7 * 7 * n_filters_2, n_fc])
b_fc1 = bias_variable([n_fc])
h_fc1 = tf.nn.relu(tf.matmul(h_conv2_flat, W_fc1) + b_fc1)
# In[10]:
# %% We can add dropout for regularizing and to reduce overfitting like so:
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# In[11]:
# %% And finally our softmax layer:
W_fc2 = weight_variable([n_fc, 10])
b_fc2 = bias_variable([10])
y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# In[12]:
# %% Define loss/eval/training functions
cross_entropy = -tf.reduce_sum(y * tf.log(y_pred))
optimizer = tf.train.AdamOptimizer().minimize(cross_entropy)
# In[13]:
# %% Monitor accuracy
correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
# In[21]:
# %% We now create a new session to actually perform the initialization the
# variables:
sess = tf.Session()
sess.run(tf.initialize_all_variables())
# In[22]:
# %% We'll train in minibatches and report accuracy:
batch_size = 100
n_epochs = 5
for epoch_i in range(n_epochs):
for batch_i in range(mnist.train.num_examples // batch_size):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={
x: batch_xs, y: batch_ys, keep_prob: 0.5})
print(sess.run(accuracy,
feed_dict={
x: mnist.validation.images,
y: mnist.validation.labels,
keep_prob: 1.0
}))
# In[23]:
# %% Let's take a look at the kernels we've learned
W = sess.run(W_conv1)
plt.imshow(montage(W / np.max(W)), cmap='coolwarm')
# In[25]:
# %% Let's take a look at the kernels we've learned
W = sess.run(W_conv2)
plt.imshow(montage(W / np.max(W)), cmap='coolwarm')
# In[ ]:

view raw

gistfile1.txt

hosted with ❤ by GitHub


Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

view raw

filters.ipynb

hosted with ❤ by GitHub

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: