BigSnarf blog

Infosec FTW

Monthly Archives: August 2018

Image Retrieval Using Deep Learning

RMAC RESNET

We propose a novel approach for instance-level image retrieval. It produces a global and compact fixed-length representation for each image by aggregating many region-wise descriptors. In contrast to previous works employing pre-trained deep networks as a black box to produce features, our method leverages a deep architecture trained for the specific task of image retrieval. Our contribution is twofold: (i) we leverage a ranking framework to learn convolution and projection weights that are used to build the region features; and (ii) we employ a region proposal network to learn which regions should be pooled to form the final global descriptor. We show that using clean training data is key to the success of our approach. To that aim, we use a large scale but noisy landmark dataset and develop an automatic cleaning approach. The proposed architecture produces a global image representation in a single forward pass. Our approach significantly outperforms previous approaches based on global descriptors on standard datasets. It even surpasses most prior works based on costly local descriptor indexing and spatial verification1

https://arxiv.org/pdf/1604.01325.pdf

https://arxiv.org/abs/1511.05879

https://arxiv.org/abs/1510.07493

https://arxiv.org/abs/1610.07940

https://github.com/figitaki/deep-retrieval

https://www.kaggle.com/c/landmark-retrieval-challenge/discussion/57855#335578

Advertisements